TY - JOUR
T1 - Investigating Risk Factors and Predicting Complications in Deep Brain Stimulation Surgery with Machine Learning Algorithms
AU - Farrokhi, Farrokh
AU - Buchlak, Quinlan D.
AU - Sikora, Matt
AU - Esmaili, Nazanin
AU - Marsans, Maria
AU - McLeod, Pamela
AU - Mark, Jamie
AU - Cox, Emily
AU - Bennett, Christine
AU - Carlson, Jonathan
N1 - Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2020/2
Y1 - 2020/2
N2 - Background: Deep brain stimulation (DBS) surgery is an option for patients experiencing medically resistant neurologic symptoms. DBS complications are rare; finding significant predictors requires a large number of surgeries. Machine learning algorithms may be used to effectively predict these outcomes. The aims of this study were to 1) investigate preoperative clinical risk factors and 2) build machine learning models to predict adverse outcomes. Methods: This multicenter registry collected clinical and demographic characteristics of patients undergoing DBS surgery (n = 501) and tabulated occurrence of complications. Logistic regression was used to evaluate risk factors. Supervised learning algorithms were trained and validated on 70% and 30%, respectively, of both oversampled and original registry data. Performance was evaluated using area under the receiver operating characteristics curve (AUC), sensitivity, specificity, and accuracy. Results: Logistic regression showed that the risk of complication was related to the operating institution in which the surgery was performed (odds ratio [OR] = 0.44, confidence interval [CI] = 0.25–0.78), body mass index (OR = 0.94, CI = 0.89–0.99), and diabetes (OR = 2.33, CI = 1.18–4.60). Patients with diabetes were almost 3× more likely to return to the operating room (OR = 2.78, CI = 1.31–5.88). Patients with a history of smoking were 4× more likely to experience postoperative infection (OR = 4.20, CI = 1.21–14.61). Supervised learning algorithms demonstrated high discrimination performance when predicting any complication (AUC = 0.86), a complication within 12 months (AUC = 0.91), return to the operating room (AUC = 0.88), and infection (AUC = 0.97). Age, body mass index, procedure side, gender, and a diagnosis of Parkinson disease were influential features. Conclusions: Multiple significant complication risk factors were identified, and supervised learning algorithms effectively predicted adverse outcomes in DBS surgery.
AB - Background: Deep brain stimulation (DBS) surgery is an option for patients experiencing medically resistant neurologic symptoms. DBS complications are rare; finding significant predictors requires a large number of surgeries. Machine learning algorithms may be used to effectively predict these outcomes. The aims of this study were to 1) investigate preoperative clinical risk factors and 2) build machine learning models to predict adverse outcomes. Methods: This multicenter registry collected clinical and demographic characteristics of patients undergoing DBS surgery (n = 501) and tabulated occurrence of complications. Logistic regression was used to evaluate risk factors. Supervised learning algorithms were trained and validated on 70% and 30%, respectively, of both oversampled and original registry data. Performance was evaluated using area under the receiver operating characteristics curve (AUC), sensitivity, specificity, and accuracy. Results: Logistic regression showed that the risk of complication was related to the operating institution in which the surgery was performed (odds ratio [OR] = 0.44, confidence interval [CI] = 0.25–0.78), body mass index (OR = 0.94, CI = 0.89–0.99), and diabetes (OR = 2.33, CI = 1.18–4.60). Patients with diabetes were almost 3× more likely to return to the operating room (OR = 2.78, CI = 1.31–5.88). Patients with a history of smoking were 4× more likely to experience postoperative infection (OR = 4.20, CI = 1.21–14.61). Supervised learning algorithms demonstrated high discrimination performance when predicting any complication (AUC = 0.86), a complication within 12 months (AUC = 0.91), return to the operating room (AUC = 0.88), and infection (AUC = 0.97). Age, body mass index, procedure side, gender, and a diagnosis of Parkinson disease were influential features. Conclusions: Multiple significant complication risk factors were identified, and supervised learning algorithms effectively predicted adverse outcomes in DBS surgery.
KW - Data imputation
KW - Deep brain stimulation
KW - Gradient boosting machines
KW - Machine learning
KW - Neurosurgery
KW - Risk stratification
KW - Supervised learning
UR - http://www.scopus.com/inward/record.url?scp=85076019449&partnerID=8YFLogxK
U2 - 10.1016/j.wneu.2019.10.063
DO - 10.1016/j.wneu.2019.10.063
M3 - Article
C2 - 31634625
AN - SCOPUS:85076019449
SN - 1878-8750
VL - 134
SP - e325-e338
JO - World Neurosurgery
JF - World Neurosurgery
ER -