TY - GEN
T1 - Relative expression analysis for identifying perturbed pathways
AU - Eddy, James A.
AU - Geman, Donald
AU - Price, Nathan D.
PY - 2009
Y1 - 2009
N2 - The computational identification from global data sets of stable and predictive patterns of gene and protein relative expression reversals offers a simple, yet powerful approach to target therapies for personalized medicine and to identify pathways that are disease-perturbed. We previously utilized this approach to identify a molecular classifier with near 100% accuracy for differentiating gastrointestinal stromal tumor (GIST) and leiomyosarcoma (LMS), two cancers that have very similar histopathology, but require very different treatments. Differential Rank Conservation (DIRAC) is a novel approach for studying gene ordering within pathways and is based on the relative expression ranks of participating genes. DIRAC provides quantitative measures of how pathway rankings differ both within and between phenotypes. DIRAC between pathways in a selected phenotype contrasts the scenarios where either (i) pathways are ranked similarly in all samples; or (ii) the ordering of pathway genes is highly varied. We examined gene expression in GIST and LMS tumor profiles and identified pathways that appear to be tightly regulated based on high conservation of gene ordering. The second form of DIRAC manifests as a change in ranking (i.e., shuffling) between phenotypes for a selected pathway. These variably expressed pathways serve as signatures for molecular classification, and the ability to accurately classify microarray samples provided strong validation for the pathway-level expression differences identified by DIRAC.
AB - The computational identification from global data sets of stable and predictive patterns of gene and protein relative expression reversals offers a simple, yet powerful approach to target therapies for personalized medicine and to identify pathways that are disease-perturbed. We previously utilized this approach to identify a molecular classifier with near 100% accuracy for differentiating gastrointestinal stromal tumor (GIST) and leiomyosarcoma (LMS), two cancers that have very similar histopathology, but require very different treatments. Differential Rank Conservation (DIRAC) is a novel approach for studying gene ordering within pathways and is based on the relative expression ranks of participating genes. DIRAC provides quantitative measures of how pathway rankings differ both within and between phenotypes. DIRAC between pathways in a selected phenotype contrasts the scenarios where either (i) pathways are ranked similarly in all samples; or (ii) the ordering of pathway genes is highly varied. We examined gene expression in GIST and LMS tumor profiles and identified pathways that appear to be tightly regulated based on high conservation of gene ordering. The second form of DIRAC manifests as a change in ranking (i.e., shuffling) between phenotypes for a selected pathway. These variably expressed pathways serve as signatures for molecular classification, and the ability to accurately classify microarray samples provided strong validation for the pathway-level expression differences identified by DIRAC.
UR - http://www.scopus.com/inward/record.url?scp=77950997518&partnerID=8YFLogxK
U2 - 10.1109/IEMBS.2009.5334063
DO - 10.1109/IEMBS.2009.5334063
M3 - Conference contribution
C2 - 19964680
AN - SCOPUS:77950997518
SN - 9781424432967
T3 - Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
SP - 5456
EP - 5459
BT - Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
PB - IEEE Computer Society
T2 - 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Y2 - 2 September 2009 through 6 September 2009
ER -